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ABSTRACT. In this paper, we define reduced reciprocal Randi¢ matrix
of a graph G on n vertices. It is denoted by RRR(G) and is defined as
an n X n matrix whose (4, j)th—entry is |/(dv, —1)(dv; — 1) if v; and
v; are adjacent, and 0 otherwise. The reduced reciprocal Randi¢ energy
is the sum of absolute values of the eigenvalues of RRR(G). Reduced
reciprocal Randi¢ energy of some well-known and much studied graphs
are reported. Also, an upper and lower bound for the reduced reciprocal
Randi¢ energy of a graph with respect to a vertex subset is presented.
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1. INTRODUCTION

Reduced reciprocal Randi¢ index is one of the vertex—degree-based
graph invariant, which was earlier considered in the chemical and/or mathe-
matical literature, and somehow evaded the attention of most mathematical
chemists. But in 2014, Gutman et al. [5] brought back this topological index
into the main stream of the mathematical chemistry. It is defined as

RRR(G)= > /(du—1)(dy - 1),

weE(QG)

where E(G) is the edge set of G, d,, and d, represents the degree of the
vertices u and v, respectively.

The energy of a graph G is the sum of the absolute values of the eigenval-
ues of the adjacency matrix of G [4,12]. It has a correlation with the total
pi—electron energy of a molecule in the quantum chemistry as calculated
with the Hiickel molecular orbital method. Studies on Randié¢ indices can
be found in [5,13,15-17]. In spectral graph theory, different kinds of energy
of a graph G have been extensively studied by many researchers and some
of them can be found in [3,6-11,14].

Motivated by the reduced reciprocal Randié¢ index, we introduce the reduced
reciprocal Randi¢ matrix RRR(G) as RRR(G) = (7ij)nxn, where

o { \/(dvi —1)(dy, — 1), viv; € B(G)

0, otherwise.
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The reduced reciprocal Randi¢ energy is given by

n
RRRE(G) =Y o
i=1
where «; are the eigenvalues of reduced reciprocal Randi¢ matrix.

Let x be a subset of vertex set of G (for example, x may be a minimum
dominating, double dominating set, global dominating set, etc.). Then we
define reduced reciprocal Randi¢ matrix as RRR,(G) with respect to the
set x as RRR,(G) = (7ij)nxn, where

V(o = 1)(dy, = 1), vy € B(G)
Tig =94 1, ifi=7and v; € x
0, otherwise.

The reduced reciprocal Randi¢ energy with respect to the set y, denoted
by RRRE, (G), is the sum of the absolute values of the eigenvalues of the
matrix RRR,(G).

In Section 2 of the paper, reduced reciprocal Randi¢ energy of some well-
known graphs are computed. In Section 3, an upper and lower bound for
the reduced reciprocal Randi¢ energy of a graph with respect to a vertex
subset x is obtained.

2. REDUCED RECIPROCAL RANDIC ENERGY OF SOME STANDARD GRAPHS

In this section, we obtain the reduced reciprocal Randi¢ energy of some
standard graphs.

Theorem 2.1. Reduced reciprocal Randié energy of complete graph K, is
RRRE(K,)=2(n—2)(n—1).

Proof. The degree of a vertex in K, is n—1. Hence its reduced reciprocal
Randi¢ matrix is

0 n—2 n—-2 ... n—2 n—2]
n—2 0 n—2 ... n—2 n—2
n—2 n—2 0 ... n—2 n—2
n—2 n—2 n—2 ... 0 n—2
_n—2 n—2 n—2 ... n—2 0 |

The spectrum of the above matrix consists of —(n — 2) with multiplicity
n —1 and (n — 2)(n — 1) with multiplicity 1. Therefore, RRRE(K,) =
2(n—2)(n—1). O
Definition 2.2. [1] The crown graph SO is a graph whose vertex set can be
partitioned into two sets {ur, ua, ..., un} and {v1,ve,...,v,} such that u;v;
s an edge if and only if i # j.

Theorem 2.3. The reduced reciprocal Randié¢ energy of crown graph SO is

RRRE(S?) = 4(n —1)(n — 2).
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Proof. The reduced reciprocal Randi¢ matrix of S is

T 0 0 0 ... 0 0 (-2 ... n—-2) (n—2)]
0 0 0 0 (n—2) 0 oo m=2) (n—-2)
0 0 0 0 n=2) (n—2) ... 0 (n—2)
0 n—2) n—2) ... (n—2) 0 0 0 0

-2 0 (n—2) ... (n—2) 0 0 ... 0 0

(m—2) (n—=2) (n—2) ... 0 0 0 0 0 |

Characteristic equation is
(a—(n=2)""at+(n—2))"Ha+{n-1)(n—2)(a—(n-1)(n—2)=0.
Therefore the spectrum of RRR(SY) is

m=2)(n—1) —(n—2)(n—1) —(n—2) (n—2)

1 1 n—1 n—1 '
Therefore, RRRE(S?) = 4(n — 1)(n — 2). O
Theorem 2.4. The reduced reciprocal Randi¢ energy of a complete bipartite
graph K, n, 1s
2vmnvmn —m —n+1
Proof. The reduced reciprocal Randi¢ matrix of complete bipartite graph
Ko is

o 0 0 0 A A A AT
0 0 0 O A A A A
0 0 0 O A A A A
0 0 0 O A A A A
A A A A 0 0 0 O
A A A A 0 0 0 O
A A A A 0 0 0 O
A A A A 0 0 0 0]

Here A=+vmn—m—n+1.
Therefore, Specrrr(Kmn) =
vmnymn —m—n+1 0 —vmnymn—m-—n+1
1 m+n—2 1 '
Hence, RRRE(Kp, ) = 2¢/mnymn —m —n+ 1. O
Definition 2.5. [1] The cocktail party graph, denoted by K,x2, is a graph
with vertex set V. = UJ_ {u;,v;} and edge set E = {usu;, vivj, uivj, viu;
1<i<j<n}.
Theorem 2.6. The reduced reciprocal Randié¢ energy of K, is
RRRE(Ky,x2) =4(2n —3)(n — 1).
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Proof. The reduced reciprocal Randi¢ matrix is

r o
0
2n—3
2n—3
2n—3
2n — 3
2n—3
12n — 3
Therefore,

0

0
2n —3
2n —3
2n —3
2n—3
2n — 3
2n —3

Specrrr(Knx2) =

2n—3 2n—3 2n—3 2n-—3
2n—3 2n—3 2n—3 2n—3
0 0 2n—3 2n—3
0 0 2n—3 2n—3
2n—3 2n—3 0 0
2n—3 2n—3 0 0

2n—3 2n—-3 2n—-3 2n-—3
2n—3 2n—-3 2n—-3 2n-—-3

Hence, RRRE(K,x2) = 4(2n — 3)(n — 1).

3. PROPERTIES OF REDUCED RECIPROCAL RANDIC ENERGY

2n —3
2n—3
2n—3
2n — 3
2n — 3
2n —3

0

0

< 2(2n—?)1)(n—1) 0 —2(2n—3) >

n n—1

2n — 37
2n—3
2n—3
2n —3

2n—3
2n—3
0
0

The following result gives the first three coefficients of the reduced recip-
rocal Randi¢ characteristic polynomial and can be easily proven using the
definition of characteristic polynomial.

Proposition 3.1. In the reduced reciprocal Randi¢ charecteristic polynomial

orrr(G, @), the first three coefficients are 1, 0 and — Z (dy — 1)(d, — 1),

respectively.

Proof.

1.

i=1

(i) From the definition of the characteristic polynomial, we get ag =

(ii) The sum of the determinants of all 1 x 1 principal submatrices is equal

to the trace.

(iii) We have

ay = (=1)! -trace of [RRR(G)] = 0.

(1Pa = Y |
—~_ |aji ajj
1<i<j<n
= Y aiay — ajiay
1<i<j<n
= Y aiay— Y ajay
1<i<j<n 1<i<gj<n

= =) (dy—1)(dy—1).
i=1

Proposition 3.2. We have

> a? =2 [(du—1)(dy — 1)),
i=1 i=1
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where o represents reduced reciprocal Randié eigenvalues.

Proof. We know that

n n
2 _ -
Q= Q5 Qg4

i=1 i=1 j=1
n
_ 2 2
= 2 E agj + E Qg
i<j i=1
_ Z 2
= 2 Cbij
i<j

= 22[(du - 1)(dv - 1)]

i=1

Theorem 3.3. Let G be a graph with n vertices. Then

RRRE\(G) < ,|2n Z[(du —1(dy — 1) = |x[]:

Proof. From Cauchy-Schwartz inequality,

(£) =(5) (5)

Let z; = 1 and y; = a;. Then

(Se) = () ()

which implies that

RRRE\(G) < |20 [(dy — 1)(dy — 1) — [x]]

=1

Theorem 3.4. Let G be a graph with n vertices. Then

RRRE,(G) > | |x|+2 iw(du “1)(dy — 1))2 + n(n — 1)[Det(RRR(G))] .

833
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Proof. By definition,

(RRRE,(G))?

(&)

n n

dolail Y oyl
=1 j=1

n
2
(z|ai|)+z|ai|aj|.
i=1 i#j

Using arithmetic mean and geometric mean inequality, we have

_ 1
n(n—1)

1
WZW%H%’\ 2 H|ai||aj|

i#) i#]
Therefore,
1
n n(n—1)
(RRRE\(@)* > > |aiP+nmn=1) | []|ellay|
i=1 i#j

Y

n n ﬁ
Z | o |2 +n(n—1) (H | v |2(n—1))
i=1 i=1

n

= x|+ 2[2 (dy — 1)(dy — 1)] + n(n — 1)[|RRR|]~.

i=1

n

RRRE,(G) > ,|Ix| + Q[Z (dy —1)(dy = 1)] + n(n — 1)[|RRR|]72L.

=1

O

Definition 3.5. [12] Let G and H be two graphs. The join GV H of G and
H is a graph obtained from G and H by joining each vertexr of G to every
vertex in H.

Lemma 3.6. [2] Fori= 1,2, let M, be a normal matriz of order n; having
all its row sums equal to ;. Suppose 1i,0;2, 603, ...,0i, are the eigenvalues
of M;, then for any two constants a and b, the eigenvalues of

Ml aJn XN,
M := 1z
bJ’annl M2
are O;; for i = 1,2, j = 2,3,...,n; and the two roots of the quadratic
equation (x — ri)(x — re) — abning = 0.

Theorem 3.7. Let Gy be a r1—regular graph of order ny and let Go be a
ro—regular graph of order na. Then the spectrum of RRR(G1V G2) consists
of (r1 +n2 — 1)Xi(G1) and (r2 + n1 — 1)A;(G2) and the two roots of the
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quadratic equation (x — (r1 + ng — 1)r1)(x — (re +n1 — )re) — (r1 + na —
1)(7“2 +n1 — 1)TL1TLQ

Proof. Since G1 and G+ are regular graphs, the RRR matrix of G; V G2 can
be obtained as follows:

(7’1 + no — 1)A(G1) [(Tl +ng — 1)(T2 +ng — 1)]1/2JTL1 Xn2
[(7’1 +ng — 1)(7’2 +ny — 1)]1/2Jn2><n1 (7’2 +ny — 1)A(G2)

Setting a = b = [(r1 + na — 1)(r2 + ny — 1)]'/? in Lemma 3.6, we arrive at
the desired result. g
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